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SUMMARY

This report describes generalized diffusion models selected for use

in estimating toxic fuel hazards at Kennedy Space Center and the development of

requisite meteorological inputs for these models through an intensive analysis of

measurements from the NASA 150-meter Meteorological Tower Facility,

Jimsphere and radiosonde flights at KSC.

The generalized diffusion models selected for use at KSC are adjust-

able for initial cloud dimensions near the source and source emission time and

are in principle applicable to all source types. The basic model format is

similar to the conventional Gaussian plume equation. Additional terms have been

added to account for the effects on cloud growth of the depth of the mixing layer

and vertical wind shear, and for cloud depletion by decay, precipitation scavenging

and gravitational settling. Subsets of equations have been developed for calcula-

ting buoyant plume rise caused by the liberation of thermal energy at the source.

Although the models a_',e of the steady-state type, provision is also made to

accommodate simple step changes in atmospheric structure at arbitrary travel

distances or travel times downwind from the source.

Because of the 5-kilometer depth of the atmosphere that must be con-

sidered in the KSC toxic fuel problem, the above models have been incorporated

in a multi-layer construct which has been programmed for computer calculations

of concentration fields under Contract NAS8-21453.

in the development of requisite meteorological inputs for the multi-

layer diffusion model, a detailed study was made of data from NASA's 150-meter

Meteorological Tower Facility at Kennedy Space Center. Attention was centered

on defining the properties of representative vertical profiles of wind speed,

temperature, and the lateral intensity of turbulence and establishing the dependence
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of these profile properties onmean wind speed, wind direction, and time of day.

For general application at KennedySpaceCenter, curves were prepared for esti-

mating 10-minute values of (rA and (rE at a height of 18meters under various wind

speedand stability conditions. Similar sets of curves, using wind speedand stability

as predictors, were prepared for use in estimating the power-law dependenceof

wind speedand (rA on height. Under near-neutral conditions, crA and (rE are
approximately 9 and 5 degrees respectively for all wind speeds, andthe wind speed

profile power-law exponentp is approximately 0.30. During unstable conditions,

(rA decreases from about20 degreeswhenthe wind speedis 1 to 2 meters per second
to about 10degrees whenthe wind speedis 7 to 11meters per second; during stable

conditions, (rA increases from about 6 degrees whenthe wind speedis 1 to 4 meters
per secondto about 7.5 degreeswhenthe wind speedis 4 to 7 meters per second.

For the corresponding wind speedranges, (rE decreases from about 12degrees to

6 degrees during unstable conditions and has a constant value of about 3 degrees

during stable conditions. During unstable conditions, p increases from about 0.08

when the wind speedis 1 to 2 meters per secondto about 0.17 whenthe wind speed

is 7 to 11meters per second; during stable conditions, p decreases from about 0.45

whenthe wind speedis 1 to 2 meters per secondto about 0.35 whenthe wind speedis

4 to 7 meters per second. Under all stability conditions, the power-law exponentq

defining the height dependenceof (rA decreases with increasing wind speed. The

exponent q also decreaseswith decreasing instability during unstable conditions and

decreases slightly with increasing stability during stable conditions. Under moderatel]

unstable conditions, q is about -0.05 when the wind speedis 1 to 2 meters per second

and -0.35 whenthe wind speedis 7 to 11 meters per second. For the same range of

wind speedunder near-neutral conditions, q decreases from about -0.15 to -0.45.

Under stable conditions, q is about -0.25 whenthe wind speedis 1 to 2 meters per

secondand -0.55 whenthe wind speedis 4 to 7 meters per second.

Other KSCmeteorological data studied include 12 tetroon flights. The

averagevalue of (rE obtained from four over-water flights was 6.5 degrees; the
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average value of aE obtained for eight overland flights was 10.6 degrees. Also,

a study was made of the structure of land- and sea-breeze circulations at Cape

Kennedy using 150-meter tower and Jimsphere data for the summer seasons of

1966 and 1967. Average profiles of wind speed and direction were prepared from

these data for eight selected sea-breeze cases and five land-breeze cases. The

sea-breeze profiles showed an onshore component up to a height of about 1000

meters with the maximum speed of about 8 meters per second occurring over

the 200 to 300 meter height interval. The land-breeze profiles showed an off-

shore component up to a height of about 600 meters with a low-level jet-type

maximum of 8 meters per second at about 200 meters.

To illustrate the selection of meteorological inputs for the multi-layer

diffusion models, four representative meteorological situations were selected

from each of the two major seasons of the year. Layer boundaries and gross

meteorological model inputs were assigned for each of the eight cases on the

bases of Cape Kennedy radiosonde data. Turbulence parameters were assigned

to an 18-meter reference level using the aA and _E curves developed from the

analysis of the climatological data from NASAts 150-meter Meteorological Tower.

Interim procedures based principally on the wind-speed profile are given to obtain

(_A and _E values at other heights.

For many reasons, including uncertainties in source definition as well

as uncertainties contributed by atmospheric factors, the development and valida-

tion of procedures for the estimation of toxicity hazards arising from the use of

rocket engine fuels must be a continuing process. Recommendations directea

toward improving the accuracy of hazard predictions are offered at the end of the

report.
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SECTION 1

GENERALIZED DIFFUSION MODELS FOR ESTIMATING TOXICITY

HAZARDS AT KENNEDY SPACE CENTER

1.1 BACKGROUND

Some of the rocket engine fuels currently used at Kennedy Space Center

(KSC) and many of the new candidate fuels for future use contain materials that,

if released to the atmosphere, are potentially harmful to health, property, vege-

tation, and the ecology of the area. The release of toxic fuels to the atmosphere

may occur in a variety of ways, such as from:

inadvertent fuel spillage during storage, transport or

vehicle fueling operations

• Combustion products from normal vehicle launch

• Vehicle fallback on pad

• Vehicle destruct on pad

• Vehicle destruct after lift off and normal launch

Except for a cold fuel spill, all the above release modes are accompanied by com-

bustion and the production of heat. Combustion processes affect the chemical and

physical composition of the material released to the atmosphere and the heat pro-

duced during combustion results in a buoyant cloud or plume that may rise to

great heights. Reliable quantitative estimates of the toxicity hazard posed by

rocket motor fuels are thus important for current and future operations at Kennedy

Space Center as well as for planning and research purposes.



Developmentof quantitative procedures for estimating the toxic fuel

hazard at KSChas beenundertaken by the GCA Technology Division under two

concurrent contracts (Contracts Nos. NAS8-21453and NAS8-30503)with the

GeorgeC. Marshall SpaceFlight Center of the National Aeronautics and Space

Administration. This report contains a description of the portion of the work

completed under Contract No. NAS8-30503. Principal attention is focused on the

selection of diffusion models and the developmentof the requisite meteorological

model inputs for toxicity hazard estimation at KSC from an intensive analysis of

meteorological observations made previously at KennedySpaceCenter and other

locations. The KSCobservations include measurements made at the NASA 150-

meter Meteorological Tower Facility, Jimsphere flights, and rawinsonde data.

The final report under Contract No. NAS8-21453(Dumbauld, et al., 1970)is in

the form of a handbookcontaining a detailed description of the diffusion-prediction

methodology recommendedfor use in toxicity hazard estimation at KSC, together

with completely-worked example calculations, computer program listings and user

instructions, and various graphs and nomograms for rapid manual estimation of

concentrations and dosages.

The remainder of this section of the report contains a discussion of the

overall problem of estimating toxic fuel hazards at KSC; a review of the state-of-

the-art of atmospheric diffusion modeling; a description of the generalized diffusion

models developedby the GCA TechnologyDivision for use in hazard estimation at

KSC; and specifications of the source and meteorological parameters required by

these models.

1.2 REQUIREMENTSFORATMOSPHERICDIFFUSIONMODELINGAT KSC
AND THE CURRENTSTATE-OF-THE-ART

The principal source types that are likely to be involved in atmospheric

emissions of toxic fuel materials at KennedySpaceCenter have beenmentioned in
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Section 1.1 above. It is evident from a consideration of these source types that,

with the exception of cold fuel spills on the ground, toxic materials may be emitted

anywhere between ground level and some point on the flight trajectory of vehicles

launched from KSC. By direction of the NASA Contracting Officer's Representative,

the upper limit of the atmosphere to be considered under the two GCA Technology

Division contracts was set at 5 kilometers. Any diffusion models employed in

toxic-fuel hazard estimation at KSC must therefore provide:

An accurate description of the atmospheric transport,

dispersal and decay of all airborne toxic material

released as the result of normal launch operations, fuel

spillage, vehicle abort or vehicle destruct between

ground level and a maximum height of 5 kilometers

Satisfactory quantitative estimates of the concentration

and dosages of toxic material thus released at all down-

wind distances at which these concentrations and dosages

exceed established thresholds

Satisfactory quantitative estimates of the surface deposi-

tion of toxic materials caused by gravitational settling,

precipitation and other removal mechanisms

It is important to note the space and time scales implicit in the above

requirements. The maximum dimensions of the volume of air that must be con-

sidered extend vertically a distance of 5 kilometers from the ground or sea surface,

and extend horizontally for distances of 100 kilometers or more, depending on the

circumstances. The time required for clouds of toxic material to traverse an air

volume of this size is approximately 5 hours. Also, the source dimensions and

other source properties are not easily reconciled with ideal point or line concepts

conventionally used in diffusion models. Hilst (1967) has discussed in detail the



problem of source definition in a previous study of toxic-fuel hazards at Kennedy

SpaceCenter.

The current state-of-the-art of atmospheric diffusion modeling as

revealed by Pasquill (1962)and Slade(1968), from the point of view of obtaining

reliable engineering estimates of the hazard associatedwith the KSCtoxic fuel

problems outlined above, clearly leaves much to be desired. The simple truth

of the matter is that the validation of diffusion-prediction techniques, even for the

simplest practical problems involving continuouspoint-source emission over

relatively short times and distances, is veinyincomplete. Sladedescribes the

state-of-the-art in the Preface to Meteorology and Atomic Energy (1968)in

these words:

"The large number of authors whohave contributed to this
volume guarantees that there will be somediversity of views
andorientation. This diversity constitutes an accurate picture
of anexpandingtechnical field in which coincidenceof approach
andopinion is not always found and, indeed, may not as a general
rule be possible.

The reader should not expect to find hard andfast rules for
the evaluation of a specific problem. The treatment of a practi-
cal situation usually involves the use of specific quantitative
techniquesalong with a broad variety of assumptionsengendered
by the imperfect knowledgeof the atmosphere andthe pollutant-
producing device. Although these assumptionsmay be justified
on scientific grounds, their selection canbe rationally made only
by someonewith a broader range of experience andknowledge
than canbe garnered from even a careful reading of the following
pages."

It is therefore not possible to apply universally-accepted and adequately-

validated prediction techniques to the KSChazard prediction problem. As a purely

practical matter, comprehensivevalidation for most of the emission modes cited

abovewill probably never be possible becauseof the vast level of effort that would

be required and the infrequent occurrence of vehicle abort anddestruct situations.
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On the other hand, the requirements for toxic-fuel hazard estimation exist and

something must be done by way of estimating at least order-of-magnitude effects,

using the best available techniques and knowledge. Available information with

respect to atmospheric transport and diffusion processes in the lower troposphere,

for distances of the order of 100 kilometers, is fragmentary (Pasquill, 1962;

Tyldesley and Wallington, 1965_ and Slade, 1968, pp. 143-188). Knowledge of

the mesoscale atmospheric circulations that control these processes is largely

qualitative. Partial documentation of mesoscale circulations in the area surround-

ing Kennedy Space Center has already been accomplished. Hill (1967) has reviewed

the sea-breeze circulation at KSC and described the characteristics of sea-breeze

fronts. Endlich, etal., (1964) have used Jimsphere soundings made at KSC to

analyze the features of vertical wind profiles in the layer extending from 200

meters above the surface to a height of 15 kilometers. Smaller scale studies of

the characteristic features of the wind structure at KSC in the layer between the

surface and a height of 150 meters have been made by Fichtl (1968), Fichtl and

McVehil (1969), McVehil and Camnitz (1964) and Blackadar, Dutton, Panofsky,

and Chaplin (1969).

It should be pointed out that atmospheric processes contribute only part

of the total uncertainty involved in toxicity hazard estimations at KSC. Uncertain-

ties as to the chemical and physical properties of the sources, source strength,

source dimensions, and the amount of heat released probably contribute as much

to the total uncertainty as the uncertainties contributed by atmospheric factors.

Finally, the uncertainties associated with toxicity threshold levels and receptor

effects may well be larger than either the source or meteorological uncertainties.

1.3 GENERALIZED CONCENTRATION AND DOSAGE MODELS SELECTED

FOR USE AT KENNEDY SPACE CENTER

During the past several years, the GCA Technology Division has developed

generalized concentration and dosage models that are in principle applicable to all

source types, all environmental regimes, and to both microscale and mesoscale
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atmospheric processes. This work has beensponsoredby the U. S. Army

(Cramer, et al__.,1964; Cramer, et al_..,1967; Cramer and Dumbauld, 1968)and

the Pacific Missile Range{Cramer, Hamilton and DeSanto,1965). Attention

has beenfocused principally on transport and dispersal processes within the air

layer betweenthe ground and a height of 1 kilometer. In our opinion, these

generalized models are ideally suited for application to the toxic-fuel hazard

problem at KennedySpaceCenter andprovide comprehensiveguidelines indicating

the types of meteorological and source information required for improvements in

the accuracy of hazard predictions at KSC. The basic format of the generalized

models is similar to that of the Gaussianplume models described by Pasquill

(1962, p. 190). Additional terms have beenaddedto account for the effects of

mesoscale factors, suchas the depth of the surface mixing layer and wind shear

in the mixing layer, that control vertical andlateral diffusion. The models are

also fully adjustable for source dimensions and for the time duration of emission.

Subsetsof equations have beendevelopedfor usewith the models that provide for

calculations of the effective height of the source; surface deposition due to gravi-

tational settling andprecipitation-removal mechanisms; and for various meteoro-

logical predictors that are used to adapt the models to changesin atmospheric

structure and surface structure. Although the models are of the steady-state

type, simple step changesin atmospheric structure that occur at an arbitrary

travel distance or travel time downwindfrom the source canbe accommodated.

The generalized concentration and dosagemodels selected for use at

KennedySpaceCenter and the extension of these models to the multi-layer structure

required for KSCapplications are described below.

1.3.1 Generalized Concentration Model

The generalized concentration model is expressedas theproduct

of five modular terms:



Concentration = (Peak Concentration Term} x {Alongwind Term} x

(Lateral Term} x (Vertical Term} x (Depletion Term}

The mathematical formulas given below for the various terms are written according

to conventional usage. Specifically, the concentration model is referred to a Cartesian

coordinate system with the origin at x = 0, y = 0 and z = H, where H is the effective

height of the source. The direction of x is along the mean azimuth wind direction,

y is normal to the mean wind direction in the plane of the horizon, and z is directed

vertically with z = 0 at ground level. The distribution of concentration along each

of the three coordinate axes is assumed to be Gaussian. None of the above assump-

tions is required. The model equations are easily transformed to a polar coordinate

system or other systems, and other distribution functions may be substituted for the

Gaussian function.

The Peak Concentration Term refers to the concentration at

the point x = 0, y = 0, z = H and is defined by the expression

where

Q __

X

o _-
Y

0" ----
Z

q

(2_r)3/2 cr _ (_
x y z

source strength

standard deviation of the alongwind concentration distribution

standard aeviation of the erosswind concentration distribution

standard deviation of the vertical concentration distribution

(1-1)

where

The Alongwind Term is defined by the expression

exp [- 1/x-fit2\_x ]1_2

fi = mean wind speed

t = time of cloud travel

(1-2)



The Lateral Term is defined by the expression

The Vertical Term is given by the expression

(1-3)

exp
+ exp _z/J [ z/2]i=1 exp - _\ _ZZ

[ [_ ]+ exp - _ + exp

where

+ exp _ 1/2iHm +H+z

H = effective source height

H = height of the top of the mixing layerm

(1-4)

The multiple reflection terms following the summation sign stop the vertical cloud

growth at the top of the mixing layer and change the form of the vertical coneen-

tration distribution from Gaussian to rectangular.

The Depletion Term refers to the loss of material by simple

decay processes, precipitation scavenging, or gravitational settling. The form of

the Depletion Term for each of these processes is:

8
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where

(Decay) exp

(Precipitation Scavenging) exp

(Gravitational Settling)

t( =(v

[-kt ]

[-At]

=-22 - (v x/=) 2I-1( )1
k

t --

A =

V ___

S

decay coefficient or fraction of material lost per unit time

time

washout coefficient or fraction of material removed by

scavenging per unit time

settling velocity

When Equation (1-7) is used for the Depletion Term, the Vertical Term given by

Equation (1-4) is set equal to unity. This causes the cloud axis to be inclined

angle tan'l(Vs/fi) with respect to the horizon, followingdownward at the

W. Schmidds sedimentation hypothesis (see Pasquill, 1962, p. 226); material

that deposits on the ground surface is retained and not reflected. The vertical

growth of the cloud is stopped at the top of the mixing layer and reflected toward

the ground by the second exponential term in Equation (1-7). The depletion by

gravitational settling, of material containing a size distribution is calculated by

partitioning the distribution into various settling-velocity categories, solving

Equation (1-7) for each settling velocity, and superposing the solutions.

(1-5)

(1-6)

(1-7)

1.3.2 Generalized Dosage Model

The generalized dosage model is similar in form to the

generalized concentration model ans is defined by the product of four modular

terms:

9



Dosage = (Peak DosageTerm} x (Lateral Term}

x (Vertical Term} x (Depletion Term}

The peak DosageTerm is given by the expression

where

Q
2_fi¢ cr

y z

Q = source strength

= mean wind speed

(r = standard deviation of the crosswind dosage distribution
Y

¢ = standard deviation of the vertical dosage distribution
Z

(1-8)

The remaining terms in the generalized dosage model are defined in the same

manner as the corresponding terms for the generalized concentration model

which are given by Equations (1-3), (1-4), (1-5), (1-6) and (1-7).

1.3.3 Subset of Equations for (ry, _z' and aX

The following subset of equations is used to define the distance

dependence of the standard deviations of the crosswind, vertical and alongwind

distributions in the generalized concentration and dosage models described above:

 0x, 21* t4. jj
wile re

X
r

standard deviation of the azimuth wind angle in radians at

height H for the release time _"

unit reference distance

10
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where

X
Y

(Y

yo
O/

A0'

_E !

virtual distance

x{, or_ (_>xr

standard deviation of the crosswind distribution at the source

lateral diffusion coefficient of the order of unity

azimuth wind direction shear in radians within the layer

containing the cloud

standard deviation of the wind elevation angle in radians

at height H

(1-10)

x = virtual distance
Z

(zox (r' x rr E

(r = standard deviation of the vertical distribution at the source
zo

= vertical diffusion coefficient of the order of unity

whe re

L (x} =

(7
X [(L (x}_ 2 2] 1/2(x}_- +

alongwind cloud length when the center of the cloud is at
distance x from the source

(1-11)

An

ff
XO

0.28 (Au) (x)

= wind speed shear within the layer containing the cloud

= standard deviation of the alongwind distribution at the source

11



In Equation (1-9) above, cr_ is expressed as a function of the release time T.

Values of a_ for nearly instantaneous releases are difficult to measure directly,

but can be calculated from the following semi-empirical relationship (Cramer,

et al., 1964):

" "r " 1//5
(1-12)

where To is -< 10 minutes. The standard deviation of the wind elevation angle

' is assumed independent of the release time _- because of the relatively narrow_E

frequency range in the power spectrum of the vertical wind velocity component

that contains significant amounts of turbulent energy. This assumption is generally

valid at heights _ 100 meters above the ground surface. In the presence of large

convective cells and at heights of the order of 1 kilometer, the assumption that

Y

aE is independent of T likely does not hold. However, the effect on the accuracy

of ground-level concentration and dosage estimates is thought to be slight.

The source dimensions _xo' _yo' and azo in the above subset

refer to a stabilized cloud or plume that has just reached equilibrium with ambient

atmospheric conditions following the completion of the emission phase. These

source dimensions are best estimated from direct measurements or observations.

The virtual distances x and x are used to adjust the lateral and vertical terms
y z

of the generalized models for the initial source dimensions a and a Two
yo zo"

virtual distances are employed to facilitate the treatment of asymmetrical sources

where _yo d azo. The height of the stabilized cloud above ground level, when the

emission mode is accompanied by the release of significant amounts of thermal

energy, must be estimated from observations or by means of a mathematical

formula for buoyant plume rise such as that given in Section 1.3.6 below.

12
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1.3.4 Model Formulas for Ground Deposition Caused by Precipitation

Scavenging and Gravitational Settling

The total amount of material deposited on the ground surface

by precipitation scavenging, at some distance x, is given by the expression

AQ
exp

Iexp I-A(X-t)ll
(1-13)

where t is the time at which the precipitation begins. The principal assumptions

made in deriving the above expression are:

The rate of precipitation is steady over an area that is

large compared to the horizontal dimension of the cloud

of toxic material

The precipitation originates at a level above the top of

the toxic cloud so that hydrometeors pass vertically

through the entire cloud

The time duration of the precipitation is sufficiently

long so that the entire alongwind length of the toxic

cloud passes over the point x

Engelmann (see Slade, 1968, pp. 208-221) discusses the general problem of

calculating the amount of material removed by precipitation scavenging and

recommends values of the coefficient A that may be combined with precipitation

rates to obtain estimates of total surface deposition.

The total deposition due to the gravitational settling of heavy

particles or droplets, with settling velocity Vs, at a downwind distance x from the

13



source and on the projection of the alongwind cloud axis on the ground plane, is given

by the expression

Q d
,_ cr dxY

)11 exp -
(r (r

Z -_o Z

÷
_ ifH-2Hm-

(1-14)

After the integration and differentiation are performed, the above expression

becomes

Q \ _X+Xz/]_
% (x+xz)

exp

ii2 _   vsxj  )2Im im+ az (X+Xz) exp - _ %

(1-15)

1.3.5 Calculations of Buoyant Plume Rise

Because of the large amounts of thermal energy that may be

released during normal launch, vehicle destruct, or other malfunctions, it is

essential to have a satisfactory method of estimating the buoyant rise of material

thus released. Although much work has been done on the rise of hot plumes from

industrial stacks, relatively little information is available for instantaneous

14
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sources. The best available plume rise formula for instantaneous sources is

probably that of Morton, Taylor and Turner (1956). According to Briggs (see

Slade, 1968, p. 199), the expression for buoyant rise Ah given by these three

authors can be written as

where

Ah = 2.66

Ah = cloud rise (meters)

Q' = energy released (kilocalories)

C = specific heat of air
P

p = air density (kg m -3)

0z
potential temperature gradient

(1-16)

If A@ is defined as the change in potential temperature over

Ah, the above equation can be written as

Assuming C
P

restated as

Ah = (2.66) 4/3 [ Q' _1/3

Cp p A@/

= 0.24 kcal/kg °C and p 1.18 kg m -3= , Equation (1-17) can be

(i-17)

(1-18)

Briggs concluded that the observed cloud rises from nuclear tests were about 30

percent higher than those predicted by the Morton, Taylor and Turner model.

However, the slope of the power curve given by Equation (1-18) appears to fit

the data quite well. A more satisfactory fit to the data is achieved when the

value of the constant is increased to 8.0. Figure 1-1 shows the buoyant cloud

15
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rise for selected values of AO obtained from

Ah = 8.0(AQ_o) 1/3 (1-19)

If the gradient of potential temperature with height is used instead of A@, the above

expression for Ah becomes
1/4

ah = 4.76( _._QC_o /oz/ (1-20)

Equation (1-20) fits cloud rise data from high-_xplosive detonations recently published

by Church (1969). Susko, Kaufman, and Hill (1968) have shown that the plume rise

formula given by Morton, Taylor, and Turner (1956) provides satisfactory estimates

of the buoyant rise of exhaust plumes from statically fired rocket engines.

1.4 THE KSC MULTI-LAYER DIFFUSION MODEL

As shown in Section 3 of this report, the meteorological structure at

Kennedy Space Center between ground level and the top of the reference air volume

for hazard estimation at a height of 5 kilometers often comprises several layers with

very distinctive wind, temperature and humidity fields. A typical vertical profile

at KSC shows an easterly sea-breeze circulation in the surface layer, separated by

a transition zone, from a regime of westerly winds at the top of the reference volume.

Large horizontal spatial variations in wind regimes also occur in the lower levels of

the reference volume, usually as a consequence of the land-water interface.

These large spatial variations in wind regimes must somehow be dealt with,

if only in an approximate fashion, if the generalized diffusion models described above

are to be of practical use in hazard estimation at KSC. The vertical stratification

problem is handled by applying the generalized models to individual layers, in which

the meteorological structure is reasonably homogeneous. Layer boundaries are

placed arbitrarily at the points of major discontinuities in the vertical profiles of

wind, temperature and humidity. For simplicity, it is assumed that there is no flux

17



of toxic material across layer boundaries dueto turbulent mixing. Provision is

made for the flux of material across layer boundaries only as the result of gravita-

tional settling or precipitation scavenging.

Step changesin meteorological structure of layers, at somearbitrary

time or downwinddistance from the point of release, are accommodatedby stopping

the transport and diffusion processes in the layers affected by the changein structure,

calculating new sets of initial source and meteorological model input parameters,

and re-starting the transport and diffusion process with the new inputs.

Two geometries are involved in the multi-layer concepts outlined above.

The first is a layer geometry used with the Cartesian coordinate system of the

generalized models in which the x-axis is along the mean wind direction in the

layer. The secondgeometry refers to a basic reference grid for the area surround-

ing KSCthat is referred to fixed spatial coordinates. Transformation equations

that relate the two geometries are easily written.

The aboveconceptsof a multi-layer diffusion model havebeen incor-

porated in a computer program written in FORTRANV. The mathematical speci-

fication for this program including a complete description of the diffusion models,

user's instructions, and example calculations using meteorological inputs from

the selected case studies in Section 3 of this report, are given in the Toxic Fuel

Diffusion Handbookcompleted concurrently by the GCA TechnologyDivision under

Contract No. NAS8-21453.

The program is comprised of subroutines specifically formulated to

calculate concentration and dosagefields downwindof the various release modes

specified in Section 1.1 above, to satisfy the requirements for the multi-layer

model construct set forth in Section 1.2, and to present the results of the calcula-

tions in a variety of useful formats. The meteorological and source input require-

ments of the computer program are described below.

18
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1.5 SPECIFICATION OF METEOROLOGICAL AND SOURCE INPUTS

REQUIRED FOR ESTIMATING TOXIC FUEL HAZARDS AT KSC

1.5.1 Source Inputs

The generalized prediction models described above apply

to the following modes of release of potentially toxic materials:

• Cold fuel spillage

• Exhaust products from normal launch

Vehicle fallback, vehicle destruct or motor burnout

on pad

• Vehicle destruct after lift off and normal launch

For each release mode, the basic source information required consis'ts of the

amount and rate of toxic material release, the dimensions and position in space

of the cloud after reaching equilibrium, and the physical and chemical properties

of the material in the stabilized cloud. The source input requirements for the

most general type of release are given in Table 1-1. In the case of a cold spill,

the source approximates a continuous ground-level source; the source strength

is expressed in kilograms per second, and the alongwind cloud dimensions _xo'

(r are not required. In the case of a normal launch, the vertical dimension ofx

the stabilized cloud is given by the depth of the layer.

1.5.2 Meteorological Inputs

The meteorological inputs for the generalized prediction

models are in principle determined from a detailed knowledge of the wind,

19



TABLE 1-1

SOURCEINPUT REQUIREMENTSFOR GENERALIZED

PREDICTION MODELS

Model Input Symbol i Units

Source Strength - Total weight of each toxic
product released to the atmosphere

Time duration of release

Effective height of release of cloud after reaching
equilibrium

Initial cloud dimensions after reaching equilibrium

• Standarddeviation of the alongwind distribution
of material within the cloud

• Standarddeviation of the crosswind distribution
of material within the cloud

• Standarddeviation of the vertical distribution
of material within the cloud

l_otalquantity of heat generatedduring release

Physical and chemical properties of material In
the stabilized cloud including:

• Decaycoefficient or fraction of material

• Settling velocity of particles or droplets

Q

T
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temperature and humidity fields within the reference air volume mentioned

previously. For the normal launch, vehicle fallback, and destruct release

modes this reference volume may extend vertically to a height of 5 kilometers,

and radially from the point of release to maximum horizontal distances of the

order of 100 kilometers. For these release modes, the assignment of layer

boundaries and the selection of gross meteorological inputs must, at the

present time, be made from a very limited number of radiosonde soundings,

supplemented by Jimsphere data. Guidelines for the assignment of layer

boundaries and gross inputs are given in Section 3.1, with examples based on

Cape Kennedy radiosonde data. Suggested procedures for specifying model

turbulence parameters are given in Section 3.2. For a reference height of 18

meters, these parameters are based on an analysis of 2 years' climatological

data from the NASA 150-meter Meteorological Tower Facility (Section 2.1). To

obtain values at other heights within the surface layer, interim procedures are

based on the wind speed profile. Minimal values of turbulence are assumed in

layers which are decoupled from the surface layer or in layers above the surface

layer where no convection is occurring.

For the cold spill, the reference volume required may be

only a few hundred meters in depth and extend to maximum horizontal distances

of the order of 10 kilometers. In this case, the emphasis in specifying the

meteorological inputs is placed on surface and tower observations. In the absence

of observational data, the wind profile within the surface layer may be estimated

from the surface wind speed and stability using curves presented in Figure 2-13.

Table 1-2 gives the meteorological model inputs which are

required at a reference level within the surface layer and at each of the layer

boundaries used in the multi-layer model. From the inputs in Table 1-2, values

of _, 0, crA and crE are calculated at the required heights, and values of wind shear

A_, direction shear A0, and the vertical gradient of potential temperature d_@_O
dz
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TABLE 1-2

METEOROLOGICAL INPUT REQUIREMENTS FOR

GENERALIZED PREDICTION MODELS

Model Input

Mean wind speed

Mean wind direction

Potential temperature

Standard deviation of the azimuth wind angle

Standard deviation of the elevation wind angle

Symbol

0-?

E

Units

-1
m sec

deg

deg K

radians

radians
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are calculated for eachlayer containing the cloud. Thevalue of aAis adjusted
to the release time 1-by means of the one-fifth power law (Equation1-12). Other

required inputs are the height of the top of the surface mixing layer H and the
m

washout coefficient A.

Pot.ential temperature, used in the calculation of buoyant

plume rise, is not required for cold spill calculations.
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SECTION 2

ANALYSISOF KSC METEOROLOGICAL DATA

2.1 NASA'S 150-METER TOWER DATA

Two years of data collected at NASA's 150-meter tower have been

analyzed to provide the basis for the development of a model input climatology

for use in estimating downwind concentration fields from low-level releases at

Cape Kennedy. In the analysis, emphasis has been placed on defIning character-

istic vertical profiles of wind speed, temperature, and the standard deviation of

azimuth wind direction for the winter and summer seasons and establishing the

dependence of these profiles on wind speed, wind direction, and time of day. In

addition, the frequency of occurrence of wind direction as a function of time of

day and season has been calculated for selected wind-speed classes.

2.1.1 Description of NASA's 150-meter Meteorological Tower

Facility

NASA's 150-meter Meteorological Tower Facility is located

within the Launch Complex 39 area, about 5 kilometers inland from the Atlantic

Ocean, on Merritt Island at Kennedy Space Center, Florida. As shown in Figure

2-1, the Tower Facility, indicated by a solid triangle, is about 5 kilometers

north of the Vehicle Assembly Building (VAB) and slightly more than 5 kilometers

northwest of Launch Complex 39A. Banana Creek is south of the Tower Facility

and a small inlet (Happy Creek) is located within 100 meters of the base of the

tower. The ground surface near the tower consists of sandy soil covered by

scrub palmetto about 1 meter in height. The base of the tower is at an elevation

of 2 meters. Natural air flow to the tower is largely unrestricted with the

exception of trees, about 10 meters high, located with respect to the tower as follows:
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FIGURE 2-1. Location of NASA's 150-meter Meteorological Tower Facility

in Launch Complex 39 at Kennedy Space Center (after Kaufman

and Keene, 1968).
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Sector Distance from Tower

(de_ (m)

90 to135 450

160to180 2OO

230to300 2OO

The Tower Facility is comprised of the two towers shown in

Figure 2-2. The small 18-meter tower is located 18 meters to the northeast of

the main 150-meter tower. Climet Model C1-14 wind speed and direction sensors

are positioned at the 3-, 10- and 18-meter levels on the small tower and at the

18-, 30-, 60-, 90-, 120- and 150-meter levels of the main tower. To minimize

tower shadow effects, the 150-meter tower has a dual wind-measuring array

with one boom facing toward the northeast and the other facing southwest. The

selection of the array from which data are to be recorded may be made either

manually or automatically by means of a wind direction selector.

Temperature gradient measurements are made with shielded

and aspirated thermocouples located at the 3- and 18-meter levels on the small

tower and at the 30-, 60-, 120- and 150-meter levels on the main tower, with

the reference thermojunction at the 3-meter level of the small tower. The 3-

meter level ambient temperature is recorded separately.

Data recording capabilities include strip chart recorders for

all sensor outputs in addition to an analog tape recorder for the wind speed and

direction data. A detailed description of the Tower Facility and instrumentation

is given by Kaufman and Keene (1968).

2.1.2 Processing of the Data

Strip chart records have been collected routinely at the NASA

Meteorological Tower Facility since 1966 and reduced by the National Weather

26
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NASAWs 150-meter Meteorological Tower Facility at Kennedy

Space Center.
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Records Center at Asheville, North Carolina. The reduced data comprise mean,

minimum and maximum values of wind speed and wind direction at each tower

level for the first 10 minutes of each hour; and temperature gradient data at the

start of each 10-minute period. Reduced tower data for the two years 1966 and

1967 were made available for analysis under this contract.

Analysis procedures were designed to determine relationships

between profile characteristics and turbulence parameters and other meteoro-

logical variables that could be used to predict the meteorological inputs required

by the diffusion models described in Section 1.2. In carrying out the analysis,

the 2-year data set was first separated into subsets according to season, time of

day, wind direction and wind speed. Since it was not known a priori what data

classes would prove most suitable, the division into subsets for this initial

analysis was made in considerable detail. Figure 2-3 outlines the breakdown of

the 2-year data set into the 1152 basic subsets used in the analysis. The division

into time subsets separates the 24-hour day into daytime, nighttime and transi-

tion periods. Wind speeds and directions used in the data stratification are those

observed at the 18-meter level of the 150-meter tower.

The Computational Laboratory at Marshall Space Flight Center

provided statistical estimates of the desired parameters for each of the subsets

listed in Figure 2-3. An example of the output of the computer program is shown

in Figure 2-4 where the parameters are identified as:

DR = Wind direction range over a 10-minute period

U = Mean wind speed

UR = Wind speed range over a 10-minute period

T = Temperature "in degrees centigrade. Differences

are the temperature at the upper level minus the

temperature at the 3-meter level

= Tower level in meters above the ground3, 18,...150
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The 3- to 150-meter temperature difference data were inadvertently excluded

from the statistical summary supplied by the MSFC Computational Laboratory.

2.1.3 The Vertical Profile of Wind Speed

One of the input parameters to the diffusion models discussed

in Section 1° 2 is the mean wind speed at some specified height or integrated

over a layer. It is generally accepted (Sellers, 1965) that a simple power law

defined by the expression

adequately describes the wind profile for diffusion calculations near the earth's

surface. In this expression, _ is the mean wind speed at height z and the sub-

scripts 1 and 2 denote two measurement heights. The value of the exponent p

is related to atmospheric stability and surface roughness. The principal advan-

tage of the power law over some of the more complicated profile expressions lies

in the ease with which it can be defined and used to extrapolate wind speed from

one height to another. Estimates of the power law exponent p over a height of

approximately 150 meters have been made for Cape Kennedy from the NASA

Meteorological Tower data.

As a first step in estimating the exponent p, the ratios of the

wind speed at 60, 90, 120 and 150 meters to the wind speed at 18 meters were

plotted against the 16 wind direction sectors shown in Figure 2-3. Separate

curves were prepared for daytime and nighttime periods and for wind speed

categories of 2-4 and 4-7 meters per second. The curves for the winter and

summer seasons are given in Figures 2-5 and 2-6, respectively. These figures

show the expected pronounced diurnal variation in the ratios, with nighttime values

averaging about one and one-half times the daytime values. Average values of

31



SLC302056

,, I

_ -

' :-T-T,T-T-T-T-,-T-T-T-T
NE E SE S SW W NW N

3 I ' l ' ' I ' I ' I ' I ' I ' '

W _

T T .-T-T- -T-T-T-T- --=F_-'-T-T-T- - - T T -
_j NE E SE S SW W NW N

==
,,., _ I ' l , __, , l ' l ' _

._,_ z.............. -" ...........

':_q 2

I , I , I , I , I i I , I ,
NE E SE S SW W NW N

I

'¢ I

FIGURE 2-5.

I I ' I ' I ' I ' I ' I '

D _

mamma ra mmm mma i pm Pm Pm # mm _ % mam mam ¢immm nmm _ Pm Pm m mm mmm mn mmm am m;

s , I , l , I , I , I , I ,
NE E SE S SW W NW N

WIND DIRECTION

Ratios of the wind speeds at 60, 90, 120 and 150 meters to the wind

speed at 18 meters during the winter season for two wind speed cate-

gories and two time periods. Solid curves are for 2200-0500 EST;
dashed curves are for 1100-1500 EST. Wind speed categories in

meters per second are shown in parentheses,
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Ratios of the wind speeds at 60, 90, 120 and 150 meters, to the

wind speed at 18 meters during the summer season for two wind

speed categories and two time periods. Solid curves are for

2300-0400 EST; dashed curves are for 1000-1600 EST. Wind

speed categories in meters per second are shown in parentheses,
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the ratios increase with increasing height through the 90-meter level as expected,

but show little increase at higher elevations. The most obvious effect of wind

direction on the wind speed profile is indicated by the low values of the wind

speed ratios at all levels for nighttime periods having low wind speeds and

northwesterly winds. This decrease is not as pronounced for the higher wind

speed category at night and is not evident in either wind speed category during

the day. Minor irregularities in the curves may in part be due to differences

in surface roughness, but are also a reflection of the small number of cases

within some of the data subsets.

Examination of Figures 2-5 and 2-6 in conjunction with the

results of a study of surface roughness in the vicinity of the tower by Fichtl 0968)

indicated that the following five wind direction classes could be used in the assign-

ment of p values to the wind profile: 34 to 101, 102 to 168, 169 to 236, 237 to 303,

and 304 to 033 degrees. Plots of wind speed versus height, using the combined

data, were constructed on logarithmic paper for four wind speed categories.

These graphs, in addition to providing a simple cheek on data quality and con-

tinuity, were in a form that facilitated the estimation of the power-law exponent p

for each profile. The exponent p was determined by visually fitting a straight

Iine to the data where the speeds showed an orderly increase with height. The

slope of this line, which by definition is the exponent p, was then measured.

Values of wind speed profile power-law exponent p were determined principally

over the height interval from 18 to 90 meters to avoid the discontinuity in the

profile that frequently appears between 90 and 150 meters. The values of p

calculated by the procedure described above were plotted on polar coordinate

paper and smoothed curves were drawn for each wind speed category.

Figures 2-7 and 2-8 present the winter and summer nighttime

values of p, respectively, as functions of mean wind speed and mean wind

direction at the 18-meter level. Seasonal differences in the wind speed profiles
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FIGURE 2-7. Winter nighttime values of p as a function of the wind

direction and wind speed at 18 meters.
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for the 1-2 meter per secondcategory are likely a result of differences in atmos-

pheric stability. For wind speedsgreater than 2 meters per second, the p curves

for both seasonsare similar, except for wind directions from northwest through

north. Estimates of p for the daytime period are given in Figure 2-9. Becauseno

significant seasonaldifferences were observed in the daytime p curves, the data

were combined to provide annual curves. Wind speedprofiles for the daytime 1-2

meter per secondcategory are so irregular that no evaluation of p could be made.

Figure 2-10, which showsp as a function of wind speedand

stability, has beenprepared as a convenientmethod for estimating p for general

application at KennedySpaceCenter. The individual curves in the figure were con-

structed by plotting p values, calculated from the average ratio of the wind speeds

at 18and 90meters, against the average temperature difference between3 and 60

meters for each wind speed-time period category. Data for all wind directions

were included, and the smoothedcurves were fitted by eye to the data with no dis-

tinction being made betweenwinter and summer data points. Thesecurves indicate

a near-neutral value for p of about 0.3 which agrees closely with the near-neutral

p values of 0.27 and 0.29 for Quickborn, Germanyand Brookhaven, New York

reported by DeMarrais (1959).

2.1.4 The 10-Minute Rangeof Azimuth Wind Direction

The standarddeviations of the azimuth and elevation angles of

wind direction are related to the lateral andvertical componentsof gustiness, _v

and _w' through the expressions
ff O"

V W

erA _ -"="u and CrE_ -"='-u

where _A and crE are the standard deviations of the azimuth and elevation angles in

radian measure, respectively, and _ is the mean wind speed. The quantities crA

and crE are basic indices of diffusion in the lateral and vertical directions and are

used as direct inputs to many diffusion models, including the ones recommended
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in Section 1.3 for use at Cape Kennedy. No direct measurements of _A or crE are

routinely made at the NASA 150-meter Tower Facility. * However, the maximum

and minimum azimuth directions recorded for each 10-minute period provide

range data that can be scaled to obtain estimates of _A" The requisite sealing

factor for the wind-direction range data collected at the Meteorological Tower

Facility is one-sixth (Slade, 1968, p. 47).

The dependence of crA on wind direction, wind speed, season

and time of day was investigated in terms of the range data collected at a height

of 18 meters on the Meteorological Tower. Since seasonal differences were

found to be small, the data were combined to provide annual estimates. Sum-

maries of the range data for daytime and nighttime periods are presented in

Figures 2-11 and 2-12, respectively. A large diurnal variation in the range

during light wind conditions is apparent in the figures. For example, with wind

speeds from 2-4 meters per second, the direction range averages about 85

degrees during the daytime and only about 35 degrees during the nighttime. The

principal dependence of the range on wind direction is the increase which occurs

with westerly winds, particularly during the daytime. This increase is probably

caused by the trees west of the tower site. A sharp decrease is observed in

direction range when the winds are from 327 to 023 degrees. This decrease is

believed to result from difficulties in determining the direction range during

crossover. For this reason, the ranges for northerly winds have been excluded

from the analysis. The curves of wind direction range for this sector were

obtained by extrapolation of the curves for adjacent sectors.

*Five-minute crA values have been calculated from a limited number of high-
resolution measurements made on the NASA 150-meter Tower Facility

during neutral and unstable stratification by Alexander, et al., (1967).

Their results for the 18-meter level are in clc, se agreement with the curves

in Figure 2-13.
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FIGURE 2-11. Annual daytime wind direction range Rd at 18 meters as

a function of the wind direction and wind speed at 18 meters.
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Figure 2-13 has been prepared to provide estimates of uA for

general application at the Kennedy Space Center under various wind speed and

stability conditions. To prepare the curves, the median 18-meter direction

ranges were plotted against the temperature difference between the 60- and 30-

meter levels of the tower for each of four wind speed categories, using the data

for all time periods, both seasons, and all wind directions except northerly.

Winds from the northerly sector were excluded because of the possibility of

crossover problems mentioned above. The wind direction range scales of the

working plots were converted to uA by means of the one-sixth scaling factor.

The dependence of the wind direction range on stability is strongest during light

winds and decreases with increasing wind speed. Very stable conditions do not

occur with strong winds at the 18-meter level, and the curve for winds of 7 to 11

meters per second extends only to conditions of slight stability. As might be

expected, the range data show a large amount of scatter. An example of the

plots from which the curves were prepared is shown in Figure 2-14. The curves

shown in Figures 2-13 and 2-14 were drawn through median values within selected

AT intervals.

The height dependence of the 10-minute wind direction range

was expressed by the power-law relationship

and estimates of q as a function of mean wind speed and wind direction were

determined graphically. The results, which apply principally over the height

interval from 18 to 90 meters, are shown for daytime and nighttime periods in

Figures 2-15 and 2-16, respectively. Because seasonal differences in the

profiles appeared to be insignificant, only annual curves are presented. In the

analysis, the range data were combined into the five direction categories used

previously in the treatment of wind speed profiles. The curves were extra-

polated through the sector from 327 to 023 degrees.
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An interesting feature of these curves which is present in both

the daytime andnighttime results is the large increase in q associatedwith

westerly winds. This is apparently a result of the increase in direction ranges

at the lower tower levels noted in Figures 2-11 and 2-12 causedby the trees

located west of the site.

General curves for the estimation of q over the height of the

tower have beenestablished by procedures similar to thoseused in preparing

the curves for p shownin Figure 2-10. The curves for estimating q are pre-

sentedin Figure 2-17 and show q over the height interval from 18 to 90 meters

as a function of wind speedand stability. In preparing the curves, all data were

used except those for wind directions between327 and 033 degrees.

2.1.5 Variation of the Standard Deviation of the Lateral Wind
Componenta with Height

V

It is generally assumed that the standard deviation of the

lateral wind component a is insensitive to changes in height (see, for example,
v

Lumley and Panofsky, 1964). It can be seen from the relationship aV = aA fi that

this condition is met when the wind speed power-law exponent p is equal in

magnitude but opposite in sign to the aA power-law exponent q. The assumption

that p = -q has been checked between heights of 18 and 90 meters at the NASA

Meteorological Tower site by obtaining values of p and q from the preceding

figures and calculating ratios of p/q. Values of p and the absolute value of the

ratio p/q for selected wind directions and wind speed ranges are shown in Table

2-1. When the 18-meter wind speeds are greater than 4 meters per second, v

decreases with increasing height regardless of wind direction or time of day as

indicated by IP/_ values substantially less than one. Under light wind conditions

(2--4 meters per second) the value of the ratio when averaged over all wind direc-

tions is 0.96 in the daytime and 1.15 in the nighttime. However, there is a wide
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variation with wind direction within each period. During the daytime, the

sectors with midpoints of 120, 150, 180 and 210 degrees have ratios greater

than one; during the nighttime all sectors except those with midpoints of 240,

270 and 300 degrees have ratios greater than one.

2.1.6 Estimates of (rE at a Height of 18 Meters

In the absence of direct measurements, estimates of (rE required for

model inputs are best made from measurements obtained at other sites. Values

of (rE at a reference height of 18 meters suggested for use in diffusion models

for Kennedy Space Center may be obtained from Figure 2-18, for various com-

binations of wind speed and stability. The curves in Figure 2-18 were obtained

by scaling the (rA curves in Figure 2-13 in accordance with measurements made

at a height of 16 meters at the Round Hill site on the shore of Buzzards Bay in

Massachusetts (Cramer, Record and Tillman, 1966). Table 2-2 shows mean

Round Hill values for three stability conditions and three wind speed categories.

For any wind speed category, (rE decreases with increasing stability. In unstable

conditions, (rE decreases with increasing wind speed; under stable conditions,

(rE increases with increasing wind speed. The high values of (rE under light winds

and instability are associated with convection; the highest values under stable

conditions result from mechanical turbulence and are associated with moderate

wind speeds. The Round Hill values were calculated from 1-second bivane

observations over sampling periods of about 1 hour. However, these values may

be used as 10-minute model inputs since there is little increase in _E at 18 meters

for sampling times larger than 10 minutes. _

2.1.7 The Vertical Temperature Gradient

Temperature gradient data for the 3- to 60-meter and the 60-

to 120-meter layers for the winter and summer seasons have been related to the
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TABLE 2-2

ROUND HILL aE VALUES MEASURED AT A

HEIGHT OF 16 METERS

Wind Speed
(msec -1)

2-4

4-7

7-11

Un s table

9

7

6

(rE (deg)

Near Neutral/

Transitional

3.5

5.5

5.5

Stable
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wind speedand wind direction at the 18-meter level. The results for the day-

time and nighttime periods are shownin Figures 2-19 and 2-20. In these

figures, the median temperature differences for the two height intervals have

been plotted as a function of wind direction for two wind speedclasses. The

curves have beensmoothedby eye to eliminate extreme values believed to have

resulted from the small sample size associated with certain wind directions. A

positive AT indicates an inversion, while a negative AT indicates a lapse. Day-

time temperature profiles do not indicate any pronounced seasonal differences

for the two wind speed classes considered. The influence of wind direction

during daytime is small and is confined to the lower 60 meters. Above the 60-

meter level the daytime temperature gradient is approximately dry adiabatic.

The nighttime temperature profiles for the two wind speed

categories, on the other hand, vary significantly with season and wind direction.

As expected, the strongest nighttime temperature inversions occur under low

wind speed conditions and are more intense during winter than summer. Except

for northerly and northwesterly wind directions, the magnitude of the inversion

between 3 and 60 meters is nearly 3C in winter for the 2 to 4 meters per second

wind speed category. During the summer when the wind speed is from 4 to 7

meters per second, the 3- to 60-meter layer is nearly isothermal when the winds

have a westerly component, and shows a slight inversion when the winds have an

easterly component. A pronounced minimum in the median curves for the 3- to

60-meter layer is associated with south-southwesterly winds of 4 to 7 meters per

second in winter and with winds of 2 to 4 meters per second in summer. In the

summer, the layer from 60 to 120 meters is nearly isothermal for all wind

directions, for wind speeds of 2 to 4 meters per second. For the higher wind

speed category, the gradient is negative for all wind directions. In winter, the

median AT curves for west-southwesterly winds of less than 4 meters per second

indicate a ground based inversion extending to heights in excess of 60 meters.
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2.1.8 Frequency of Occurrence of Wind Speed and Wind
Direction Classes

The transport of airborne material is directly dependent on

wind speed and direction. In addition, the analysis of the tower data has shown

that other meteorological inputs required for the prediction of concentration

levels from ground-level releases at Cape Kennedy are related to the prevailing

wind conditions. Although current synoptic meteorological data can be used to

predict wInd speed and direction for maximum time periods of one or two days,

climatological summaries are required for longer period planning. To supple-

ment other climatological data, the frequency of occurrence of selected wind

speed and direction classes have been summarized using the wind data collected

at the 18-meter level of the 150-meter tower.

Figures 2-21 and 2-22 show the cumulative frequency distri-

butions of wind direction by wind speed category for the winter and summer

seasons, respectively, for six time periods. As shown in Figure 2-21, the most

frequent wind directians during the winter months are northwest through north.

During the night and early morning the predominant direction is northwesterly;

during the daytime and evening the predominant direction is northerly. Secondary

maximums occur for north-northeasterly and southerly winds for all time periods

with the exception of 1600-1900 EST when all directions with an easterly com-

ponent occur with nearly the same frequency. The summer season curves show

the influence of the sea breeze-land breeze circulations. During the night, the

predominant wind directions are south-southeast through south-southwest, and

by early morning the predominant direction is south-southwest. The affect of

the sea breeze shows clearly in the shift to easterly winds and higher wind speeds

during the 1000-1600 EST period. Throughout the remainder of the day and

evening the wind veers and becomes south-southeasterly by 2100-2200 EST.
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The diurnal variations in wind speed for the two seasons can

also be seen clearly in Figure 2-23 where the 18-meter wind speed frequency

distributions are plotted as a function of time of day without regard to wind

direction.

2.2 TETROON FLIGHTS

During the summer seasons of 1966 and 1967, a number of radar-

positioned constant-volume balloon (tetroon) flights were made at Kennedy

Space Center. The three-dimensional coordinates of the tetroon's position in

space and the velocity components, as measured by an FPS-16 radar, were

recorded at 2-second intervals for each flight. Twelve of the 25 available

tetroon flight records had at least one period of approximately 30 minutes of

continuous record where the tetroon was in neither an ascent nor descent stage

and where it had a well-defined overland or over-water trajectory. A total of

five 30-minute periods for the over-water category and ten 30-minute periods

for the overland category were selected for analysis. Three of the releases

had two 30-minute periods that were judged acceptable for analysis.

Standard deviations of the vertical velocity fluctuations cr were deter-
w

mined using alternate 2-second readings (4-second intervals) for averaging

times of 2.5, 5, 10 and 30 minutes. Results of this analysis, given in Table 2-3,

indicate there is little difference in the mean a between overland and over-water
w

flights for averaging times of 10 minutes or less. However, for longer averag-

ing times the mean overland cr increases in magnitude, while the mean over-
w

water _w remains nearly constant. From the small difference between the aw

estimates for the 2.5-minute and 10-minute averaging times, it appears that

nearly all the turbulent energy is contained in frequencies greater than 0.2 cycles

per minute. The increase in the overland cr between the 10- and 30-minutew

periods is probably due to large convective circulations having scale lengths of

a few kilometers.

64

IEl]



Z
l.m.l
0
n."
W
0..

I00

8O

i

I

60-

40-

20

I I I I I I I I l I

SLC302060

I

- < 2m/sec
I --1 Il_'__l - .....,"1 I --[-- I !

Oc_o I02 04 06 08 I0 12 14 16 18 20 22 O0

Time of Day (EST)

a. Winter

O0 02 04 06 08 I0 12 14 16 18 20 22 O0

Time of Day (EST)

b. Summer

FIGURE 2-23. Cumulative frequency distributions of the 18-meter wind

speed for two seasons.

65



I

0

0

0

or)

b_

0

0

b_

0
Or)

0
0

Z

0

0

M
M

Z
o

0

_ v

_4

_ m

g

®_

0000000000

00000

_000

_0000

IIIII _

o

_ _ _ _ _ _ o _ _ _

o o o o o o o o o o
o _ o o o _ o _ o o

o o o o o o o o o o

_ _ _ o o _ o o o o
o o _ o o o o o o _

IIIIIIIIII

66



No detailed relationships between (r and altitude or meteorological
w

conditions could be established with this limited data set. In the overland tra-

jectory data, the large values of (r calculated for Release No. 7555-2 are
w

associated with the highest flight altitude. The average values of (rE , obtained

from the relationship (rE = (rw/U' is 6.5 degrees for over-water flights and 10.6

degrees for overland flights.

2.3 LAND- AND SEA-BREEZE C]:RCULATIONS AT KSC

A detailed knowledge of local land- and sea-breeze circulations is

essential to the development and application of quantitative hazard prediction

techniques for use at Kennedy Space Center. These thermally-driven wind

circulations dominate the wind and temperature fields from about 30 kilometers

offshore to as far as 50 kilometers inland, and up to maximum heights of about

3 kilometers above the surface. Because of the complexity of land- and sea-

breeze wind systems and their interactions with large scale wind, temperature,

and pressure patterns, many simplifications must be made if the effects of

these thermally-driven circulations are to be incorporated in hazard prediction.

An example of the influence of land and sea breezes on the wind field near ground

level, as revealed by hourly observations made at NASA's 150-meter Meteorological

Tower Facility at Kennedy Space Center on 13 and 14 July 1967, is shown in Figure

2-24. A land breeze with southwesterly wind directions is well established by 2300

EST and maximum speeds are observed shortly after midnight. The winds remain

westerly until late morning. A sudden transition from the land breeze to a sea

breeze is evident at 1100 EST when the wind directions become southeasterly. As

expected, the wind speeds increase throughout the afternoon'and the wind direction

gradually veers because of the Coriolis effect. At sunset (1900 EST), the wind

direction is nearly parallel to the coastline. After 1900 EST, the land-breeze

circulation becomes established with southwesterly winds. By 2300 EST, the

wind speed and direction profiles are nearly identical with those observed on the
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speed (bottom) for 13 and 14 July 1967, from observations made

on the 150-meter Meteorological Tower at Kennedy Space Center.
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previous evening. Details of the transition from land breeze to sea breeze,

(commonly called a sea-breeze front) at Cape Kennedy, are described by

Hill (1967}.

2.3.1 Case Studies of Land- and Sea-Breeze Circulations from

Tower and Jimsphere Data

A number of days were selected from the summer seasons

of 1966 and 1967 for a detailed study of the structure of land- and sea-breeze

circulations at Cape Kennedy, using observations from the NASA 150-meter

Meteorological Tower Facility. The selection criteria included the requirement

that synoptic conditions be favorable for the development of a land or sea breeze.

Jimsphere data also were required to be available to provide wind speed and

direction profiles to an altitude of at least 5000 meters. There were relatively

few sets of Jimsphere data available in which the buildup and/or decay of a land

or sea breeze was clearly evident.

Figures 2-25 and 2-26 show the time variations in the ver-

tical profiles of wind speed and wind direction, respectively, for a sea-breeze

situation that occurred on 21 July 1967. The sky was nearly overcast during the

entire day so the wind speeds are lower than would be expected on a clear day.

As shown in the figures, the surface winds are from the northeast in the late

morning and veer to the southeast as the day progresses. Wind directions are

easterly between the surface and 1500 meters with the maximum speed occurring

in the layer from 400 to 800 meters after 1108 EST. The organized easterly

flow due to sea breeze extends up to about one kilometer. However, the overall

depth of the layer influenced by the sea-breeze circulation appears to be about

3 kilometers. Above this height both the speed and direction agree with those of

the large-scale circulation patterns. The development of a land-breeze circula-

tion is illustrated in Figures 2-27 and 2-28, which show the vertical profiles of

wind speed and wind direction, respectively, for 4 and 5 July 1966. At 1940 EST
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on 4 July, the sea-breeze circulation extends from ground level to a height of about

800 meters. As the night progresses, the wind directions at the lower level veer

from southerly to westerly and the height of the low level wind speed maximum

increases with time from about 150 meters at 1940 EST to 400 meters at 0530 EST.

The depth of the land-breeze circulation, indicated by the wind profiles, is

approximately 1 kilometer.

2.3.2 Average Vertical Profiles of Wind Direction and Wind Speed
for the Land- and Sea-Breeze Circulations at KSC

Vertical profiles of wind direction and wind speed from the

case studies mentioned in Section 2.3.1, and from other measurements made in

the summers of 1966 and 1967 in which Jimsphere data were available only for

the periods 0600-0800 EST and 1800-2000 EST, were combined to obtain

averaged profiles for interim use in hazard estimation at Kennedy Space Center.

The average profiles extend from the lowest measurement height (18 meters) on

the 150-meter NASA Meteorological Tower to a height of about 1.5 kilometers.

The average directions above this height were judged to have little significance.

In general, no well-defined return circulations were found in the individual

soundings for the land- and sea-breeze regimes at KSC.

Figure 2-29 shows the average vertical profiles of wind

direction and wind speed for the land-breeze circulation at KSC. These profiles

were obtained by combining the profiles from five cases in which the gradient

wind direction was southwesterly and the gradient wind speeds were about 5 meters

per second. As might be expected, it is difficult to find examples of well-defined

land-breeze circulations at KSC when the easterly Trade Winds are controlling

the gradient flow. Under these conditions, the nighttime land-breeze component

tends to weaken the on-shore easterly winds near the surface to produce a south-

easterly flow or a light, variable wind regime in the surface layer. The wind

speed profile in Figure 2-29 shows a maximum of about 8 meters per second at
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a height of approximately 250 meters. The wind direction profile reveals a

20-degree backing of the direction between 18 and 100 meters; a fairly constant

direction in the layer from 100 to 400 meters that contains the wind speed maxi-

mum; a 10- to 20-degree veering of the wind direction from 400 to 700 meters;

and a constant wind direction above 800 meters. From the shape of the two

profiles in Figure 2-29, it appears that the mean depth of the land breeze is

about 700 meters.

Vertical profiles of wind speed and wind direction for the

sea-breeze circulation, obtained by averaging eight sets of profile data, are

shown in Figure 2-30. The maximum depth of the on-shore flow is 600 to 800

meters and there is some evidence for the presence of a weak return flow in the

layer above 800 meters.

It is clear that much additional work is required to achieve

a satisfactory documentation of the structure of the land- and sea-breeze cir-

culations at KSC. Although more information on this structure can undoubtedly

be gained from further studies of existing measurements, a comprehensive

observational program will probably be necessary before the spatial and temporal

variations in KSC land- and sea-breeze circulations can be adequately modeled

for hazard prediction purposes. Significant features of these circulations that

are at present not documented include:

The landward and seaward dimensions of the primary

circulations and counter flows

The intensity and depth of the primary and counter flow

circulations

The extent to which pollutants that are injected in the

land- or sea-breeze circulation tend to be confined to
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the air volume directly involved in the circulation.

In other words, are these circulations essentially closed

systems or is there a significant mass transfer across

the system boundaries

The relationship between the structure of the land- and

sea-breeze circulations and the gross synoptic pattern

2.3.3 Hsu's (1969) Synthesized Model of the Texas Coast Land-

and Sea-Breeze Systems

Scientists at the University of Texas have recently carried

out a comprehensive semi-empirical study of the land- and sea-breeze circula-

tions along the Texas coast (Hsu, 1967; 1969; McPherson, 1968; and Felt, 1969).

The results of this study are incorporated in Hsu_s synthesized model shown in

Figure 2-31. Until more information is available on the land- and sea-breeze

circulations at Kennedy Space Center, it is not possible to state the extent to

which the details of this Texas coast model apply to KSC. However, the spatial

dimensions and intensities of the solenoidal circulations shown in the figure, as

well as their time dependence, provide a very interesting and valuable insight

to the principal features of these wind systems. Judging from the remarks in

Section 2.3.2 above, one discrepancy between the KSC systems and the ones

shown for the Texas coast is likely to be in the intensity of the counter flows.

The landward and seaward extensions of the circulations in Figure 2-31 are of

considerable interest. The fully developed land- and sea-breeze systems each

extend about 40 kilometers in both the inland and seaward directions from the

shoreline. The indicated depth of the primary circulations varies from about

0.6 to 1.0 kilometers, with the corresponding counterflows occurring in super-

posed layers of approximately the same vertical extent.
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SECTION 3

METEOROLOGICAL MODEL INPUTS FOR

SELECTED KSC WEATHER REGIMES

The meteorological inputs required for the multi-layer diffusion

model recommended for use at Cape Kennedy have been identified in Section 1.3.

In principle, these quantities are determined from a detailed knowledge of the

structure of the wind, temperature, humidity and turbulence fields within a

large reference air volume. This reference volume has a maximum vertical

dimension of 5 kilometers, and extends radially from the point of release of

toxic materials to maximum horizontal distances of the order of 100 kilometers.

In practice, the assignment of layer boundaries and the selection of gross

meteorological model inputs must be made from a very limited number of

radiosonde soundings, supplemented by Jimsphere data when available.

Because direct measurements of turbulence are not routinely made, on the

scale of the reference volume, the assignment of model turbulence parameters

must be based on limited observations and on existing empirical and theoretical

knowledge of turbulent structure. Suggested procedures for the specifying meteor-

ological model inputs are illustrated below, using Cape Kennedy rawinsonde

data, semi-empirical relationships for the behavior of turbulence parameters

with height, and results of the analysis of 2 years' climatological data from the

NASA 150-meter Meteorological Tower Facility (Section 2.1). The problem of

forecasting changes in the wind field during the downwind transport phase is not

considered in these examples.

At the start of the contract, it was assumed that an analogue approach

would be useful in establishing meteorological model inputs for Cape Kennedy.

This approach called for the development of a general classification system

consisting of a small number of synoptic weather patterns, characteristic of the
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major gross weather regimes at CapeKennedy, subdividedon the basis of

trajectory, wind speed, andstability. Representative vertical profiles of wind

and temperature were then to be assigned to the various subclasses for use in

diffusion calculations. Accordingly, synoptic maps covering the 1966-1967

period were examinedand a number of typical weather regimes at CapeKennedy

were delineated. However, examination of the radiosondedata showedvery

large variations in the vertical profiles of wind speed, wind direction, tempera-

ture and dewpoint for individual caseswithin anyone regime. Even whentwo

soundingsexhibited the samemajor features, suchas temperature inversions

or layers with strong wind shear, the heights at which these phenomenaoccurred

and their magnitudes were rarely the same. Becauseof thesevery large varia-

tions in vertical profiles, within typical synoptic regimes, the analogueapproach

was abandonedin favor of a direct specification of meteorological model inputs

through deeplayers of the atmosphere from observed or forecast profiles. To

illustrate this procedure, tables of meteorological inputs were constructed

from soundingsmade on eight days during the 1966-1967period that are repre-

sentative of typical synoptic patterns at CapeKennedy.

3.1 SELECTION OF LAYERSAND THE ASSIGNMENTOF GROSS
METEOROLOGICALINPUT PARAMETERS

In principle, the maximum depth of the atmosphere to be considered

in diffusion model calculations extendsfrom the surface to the maximum height

reachedby the top of the cloud of toxic material as it travels downwind.

Becausethe source configurations at KennedySpaceCenter include the combus-

tion trail from normal launches as well as vehicle destruct situations, the depth

of the atmosphere that must be considered extendsfrom the surface to an

arbitrary height of 5 kilometers. In applying the multi-layer diffusion model

concept, the 5-kilometer depth is subdivided into layers within which the wind,

temperature, and humidity showa regular variation with height. Layer
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boundaries are thus placed at heights where discontinuities are observed or

expectedto occur in the vertical profiles of these quantities. As pointed out in

Section 1.2, the multi-layer model hypothesis states that adjacent layers are

decoupledas far as turbulent mixing is concernedand, except for gravitational

settling and removal of material by precipitation, it is assumedthat no signi-

ficant flux of material occurs across layer boundaries.

In the eight examplesdescribed below in Section3.3, layers are

assigned to the region from the surface to a height of 5 kilometers (16,400 feet)

to conform with input requirements under Contract No. NAS8-21453. The

first step in the layer assignmentprocess is to define the upper boundary of

the surface layer. This is donefrom an inspection of available low-level

wind, temperature, and humidity information which, at CapeKennedy, includes

Jimsphere, tower and radiosondedata. Whena ground-based inversion exists,

the top of the surface layer is assumedto coincide with the top of the inversion.

The next step is to examine the vertical profiles for well-defined discontinuities

abovethe surface layer. Thewind-speed and wind-direction profiles are used

in conjunction with the temperature and dew-point profiles to locate the boundaries

of thermally-stable layers. Finally, the wind profiles are inspected for evi-

denceof strong shear, and additional layers are identified as required. Minor

discontinuities in the profiles are disregarded since their inclusion has little

effect on the estimates of ground-level concentration. Also, comparison of

vertical profiles shows that minor discontinuities can seldom be identified for

more than a few hours or over long distances.

The assignment of values of wind speed, wind direction andpotential

temperature at a reference height within the surface layer and at the top and

bottom of all other layers completes the specification of the gross meteorological

input parameters for the multi-layer diffusion model.
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3.2 ASSIGNMENT OF TURBULENCE PARAMETERS

To meet the meteorological input requirements for the generalized

diffusion model outlined in Section 1.2, the turbulence parameters aA and (rE

must be specified at each layer boundary. As an interim procedure for general

use at the Kennedy Space Center, it is suggested that crA and (rE at a reference

height of 18 meters be obtained from Figures 2-13 and 2-18, respectively, in

Section 2.1. The independent variables used to predict (rA and aE in these

figures are the 18-meter wind speed and the temperature difference between

3 meters and 60 meters, as measured on the 150-meter Tower or estimated.

It will usually be sufficient to estimate the requisite temperature difference

from the forecast weather conditions and the time of day. Under strong solar

heating, temperature differences of -1 or -2 degrees Celsius are typical.

Zero temperature differences are expected near the morning and afternoon

transition times. Under moderately stable and extremely stable conditions,

estimates of aA and _E obtained from Figures 2-13 and 2-18 are relatively

insensitive to the absolute magnitude of the temperature difference.

Figure 3-1 has been prepared as a guide in estimating the time of

occurrence throughout the year of the two diurnal transition periods. The

dashed curves are based on data presented by Scoggins and Alexander (1964)

and show the time of day each month when the temperature difference between

1.8 and 62 meters at Air Force Station 700 on Cape Kennedy indicated lapse

conditions 50 percent of the time. The transition to lapse conditions in the

morning occurs about 1.5 hours after sunrise throughout the year. In the

evening, the transition from lapse to inversion coincides closely with the time

of sunset, except during the months of June, August and September. The

occurrence of the transition period at about 1.5 hours after sunset during the

summer season probably reflects the persistence of the daytime sea-breeze

circulation into the late afternoon and early evening. The data point for July

appears to be an anomaly.
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Above the surface layer, mechanical and convective turbulent energy

is assumed negligible and the controlling meteorological factors are the mean

flow and the wind shear within each layer. If turbulent mixing occurs in the

layers above the surface layer, in the absence of well-defined convection, it

must be associated with very low turbulent intensities and relatively small scale

motions. It follows that the values for _A and aE assigned to the boundaries of

quiescent layers above the surface layer should be very small or even zero (see

Pasqulll, 1967). A general summary of the behavior of _rA and _E from near

ground level to heights of 400 to 1000 feet is given in Slade (1968). Near the

surface, 10-minute values of _A increase from 2 or 3 degrees during very stable

conditions to more than 25 degrees during periods of light winds and strong con-

vection. In general, ¢rA decreases slowly with height under all conditions. From

an analysis of tower measurements made at White Sands Missile Range, Swanson

and Cramer (1965) showed that ¢rA decreases with height according to z -p where p

is the power-law exponent for the vertical profile of mean wind speed. Near the

surface, _E increases from 1 or 2 degrees under very stable, light wind conditions

to a maximum of 15 degrees under very unstable, light wind conditions. During

neutral and stable conditions, ¢rE decreases slowly with increasing height; during

unstable conditions, crE increases with height.

The following guidelines are offered for use in assigning ffA and _E

values to the layer boundaries.

Assign ¢rA and _E values at a reference height of 18

meters on the basis of the observed or predicted

18-meter wind speed and stability conditions and

Figures 2-13 and 2-18.
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Under stable or near-neutral conditions, assume that

both aAand _Eare proportional to height raised to
the -p power (z-p) throughout the surface layer:

Under unstable conditions, assume that aA varies as z-P

and that _E varies as z 0" 3-p throughout the surface layer:

0.3-p(z)¢rA{z} = _A {18m} _-{ ; % (z} = % (18m} _-{

Assign minimal values to aA and aE at the boundaries of all

upper layers judged to be decoupled from the surface layer.

(In the examples which follow, minimal values are indicated

by zero. )

3.3 METEOROLOGICAL MODEL INPUTS FOR SELECTED WINTER

REGIMES

During winter, the circulation between the surface and 5 kilometers

at Cape Kennedy is dominated by the prevailing westerlies and the passage of

frontal systems from the northwest. However, westerly flow at low levels is

frequently replaced by easterly flow on the south side of high pressure cells

which have moved off the east coast of the United States. The depth of the layer

of easterly winds depends on the strength and vertical development of the anti-

cyclone, but may exceed 5 kilometers. The vertical temperature profile at

Cape Kennedy often shows a marked upper-level inversion or an isothermal

layer several thousand feet in depth. Under light wind conditions, a nighttime

inversion typically develops between the surface and a height of about 1000

feet. An average of five or six cold fronts pass during each winter month,
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frequently preceded by a squall line of showers and thunder showers. Warm

front passages are usually associated with wave development and occur, on

the average, about twice a month. A thick, multi-layered cloud deck generally

develops in the over-running tropical air in advance of the warm front and

produces widespread precipitation.

The four winter regimes from which the illustrative examples have

been selected are:

• Southwesterly flow in advance of a cold front

• Westerly flow to the rear of a cold front

• Deep easterly flow associated with a large anti-

cyclone off the east coast of the United States

• Shallow easterly flow associated with an anti-

cyclone off the southeast coast of the United States

3.3.1 Southwesterly Flow in Advance of a Cold Front -2315 GMT,
27 November 1966

Figures 3-2, 3-3 and 3-4 show the synoptic-scale circula-

tion pattern and the vertical structure above Cape Kennedy during the approach

of a major, rapidly-moving cold front. Figures 3-2 and 3-3 show the surface

and 700-millibar maps, respectively, when the cold front was approximately

300 miles to the northwest of Cape Kennedy. Temperature and dewpoint values

at the significant levels of the 2315 GMT Cape Kennedy sounding are plotted on

a section of a USAF Modified Skew T, Log 1J Diagram at the left in Figure 3-4.

Wind speed and direction are plotted at 1000-foot intervals at the right in

Figure 3-4. The dashed horizontal lines indicate the division of the lowest 5

kilometers into five layers for multi-layer model calculations. Layer 1 comprises
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the surface inversion, and extends to about 900 feet. Layer 2 is approximately

dry adiabatic and extends to about 2800 feet. Layer 3 is an isothermal layer

within which the dewpoint decreases rapidly. The top of Layer 3 is at 6000 feet

where the wind direction begins to back with height. The lapse rate between

6000 and 16,400 feet is approximately moist adiabatic and the wind speed

increases steadily with height. However, this height interval has been divided

into two layers on the basis of the wind direction shear. Table 3-1 lists meteoro-

logical inputs to the diffusion model at the surface reference height and at the

five layer boundaries obtained from the profiles in Figure 3-4. The values of

_A and aE given in Table 3-1 were determined by the procedures outlined in

Section 3.2. Within the surface inversion, p = 0.14 and aA and aE are assumed

to vary as z-0" 14. The temperature and wind speed profiles indicate a lapse

rate close to the dry adiabatic in Layer 2 and p = 0.06. According to the guide-

lines in Section 3.2, if Layer 2 is unstable, _A and _rE may be assumed to vary,

respectively, as z-0" 06 and z 0" 24. However, Layer 2, which is the upper part

of the daytime mixing layer, is becoming decoupled from the surface by the

developing ground-level inversion and it would probably be equally valid either

to let aE vary as z-P, or to assign minimal values to both ffA and _E at the 2800-

foot boundary.

3.3.2 Westerly Flow to the Rear of a Cold Front - 2315 GMT,
28 November 1966

By 0000 GMT on 29 November 1966, the cold front shown

approaching Cape Kennedy in Figure 3-2 had moved to a position about 300 miles

to the east of Cape Kennedy. Figures 3-5 and 3-6 show the surface and 700-

millibar maps at this time. Figure 3-7 shows the vertical profiles of temperature,

dewpoint, wind speed and wind direction at 2315 GMT, 28 November 1966. Winds

are westerly at all levels between the surface and 16,400 feet. There is a

temperature inversion of 9.4 C between about 5,700 and 8,200 feet. Below the

9O
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TABLE 3-1

METEOROLOGICAL MODEL INPUTS FOR 2315 GMT, 27 NOVEMBER 1966

Layer
No.

Height

(ft)

59

870

2,800

6,000

i0,000

16,400

Wind

Speed

(knot)

13

15

21

Wind

Direction

4O

(deg)

8 160

12 206

231

258

229

256

Potential

Temperature (rA aE

(C) (deg) (deg)

17 8 4.5

22 6 3

22 5 4

29 0 0

36 0 0

45 0 0
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FIGURE 3-5. Surface map for 0000 GMT, 29 November 1966,

FIGURE 3-6. 700-mbmapfor 0000 GMT, 29 November 1966.
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inversion, the lapse rate is approximately dry adiabatic. Winds increase from

12knots at the surface to 52 knots at the base of the inversion from the top of

the inversion to 16,400 feet, the wind speedvaries from 72 to 79knots. The

vertical structure suggests the division of the lowest 16,400 feet into three

layers. With strong winds and unstable conditions prevailing generally behind

the cold front, it is unlikely that the superadiabatic-isothermal layers shownin

Figure 3-7 betweenthe surface and 960 millibars are real. Layer 1 has there-

fore beenextendedfrom the surface to the baseof the inversion. The height

selected for the top of Layer 1, 4800feet, represents a compromise position

betweena slightly lower height suggestedby the dewpoint profile and a slightly

higher one suggestedby the temperature profile. The division betweenLayers 2

and3 is at the top of the inversion at 8200feet.

The meteorological inputs for the multi-layer diffusion

model are given in Table 3-2. Becauseof the strong winds anddry-adiabatic

lapse rate, Layer 1 is considered near-neutral and (rAand (rE are assumedto
-p -0.21

vary as z , or z .

3.3.3 DeepEasterly Flow Associated with a Large Anticyclone
off the East Coastof the United States - 0255GMT,
10 February 1966

At 0000GMT on 10 February 1966, a large high pressure

cell off the east coast of the United States controlled the circulation between the

surface and 16,400 feet at CapeKennedy. Figures 3-8 and 3-9 show the surface

and 700millibar maps for this time. The vertical profiles, plotted in Figure

3-10, show a ground-level inversion extending to 1000feet and anupper-level

inversion of 5C between6,500 and8,400 feet. Wind directions are east-southeast

betweenthe surface and 16,400 feet. The wind speeddecreases from 29knots

at the top of the surface inversion to 2 knots at 16,400 feet.
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TABLE 3-2

METEOROLOGICALMODEL INPUTS FOR2315GMT, 28 NOVEMBER 1966

Layer
No.

1

2

Height
(_)

59 16

4,800 42

8,200 71

16,400 79

Wind

Speed

(knot)

Wind

Direction

(deg)

270

282

279

251

Potential

Temper ature

(c)

11

12

32

43

(deg)

9

3

0

0

%
(deg)

5

2

0

0
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FIGURE 3-8. Surface map for 0000 GMT_ 10 February 1966.

FIGURE 3-9.

\

\

\

700-mb map for 0000 GMT, 10 February 1966.
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The subdivision by layers is shown in Figure 3-10. Layer 1

contains the surface inversion and extends to 1000 feet. Layer 2 extends from

i000 feet to the base of the upper-level inversion at 6,500 feet. Layer 3 contains

the upper-level inversion, and Layer 4 extends from the top of the upper-level

inversion to 16,400 feet.

The meteorological inputs are shown in Table 3-3. In the

surface inversion layer, p = 0.21, and aA and aE are both assumed to vary as
-0.21

Z

3.3.4 Shallow Easterly Flow Associated with an Anticyclone off

the Southeast Coast of the United States - 1115 GMT,

8 December 1966

At 1200 GMT on 8 December 1966, a 1024-millibar high

pressure cell was centered about 400 miles off the Georgia-Carolina coast and

a cold front was moving eastward through Missouri. The surface and 700-millibar

maps for this time are shown in Figures 3-11 and 3-12, respectively. The

temperature profile in Figure 3-13 shows a surface inversion of about 3 C and

an inversion of about 2 C between 7,200 and 9,000 feet. Winds are southeasterly

below the upper-level inversion, and southwesterly above the inversion. Layer 1

extends from the surface to the top of the surface inversion at 800 feet. Layer 2

extends from the top of the surface inversion to the base of the upper-level

inversion. The wind speed in Layer 2 decreases from a maximum of 17 knots

at 2,000 feet to 7 knots at 7,200 feet. Layer 3 begins at 7,200 feet, includes

the upper-level inversion, and extends to 11,000 feet where the wind direction

begins to back with height, after veering strongly with height in Layer 3. Layer 4

extends from 11,000 feet to 16,400 feet and has a uniform lapse rate and light,

southwesterly winds.
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TABLE 3-3

METEOROLOGICAL MODEL INPUTS FOR 0255 GMT, 10 FEBRUARY 1966

Layer

No.

1

Height

(ft)

59 16

1,000 29

6,500 20

8,400 13

16,400 2

Wind

Speed

(knot)

Wind

Direction

(deg)

109

112

135

130

104

Potential

Temperature

(c)

16

19

22

33

43

(deg) (deg)

9 5

5 3

0 0

0 0

0 0

99



\
\

SLC302035

FIGURE 3-11. Surface map for 1200 GMT, 8 December 1966.

!

FIGURE 3-12.

\

\

\
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\

700-mb map for 1200 GMTt 8 December 1966.
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The meteorological inputs for this example are shown in

Table 3-4 within the surface layer, p = 0.30 and (rA and aE are assumed to vary
-0, 30

as z

3.4 ME TE OROLOGICAL MODE L INPUTS FOR SELEC TE D SUMME R

RE GIME S

During summer, the general circulation between the surface and 5

kilometers at Cape Kennedy is controlled to a large extent by the position and

strength of the Bermuda High. At lower levels, the westward extension of this

semi-permanent anticyclone provides a nearly constant flow of warm moist air

over central Florida, and afternoon showers and thunderstorms occur quite

regularly. This flow of maritime tropical air is interrupted about once a month

in mid-summer by the passage of a cold front. Typically, the cold front stalls

in southern Florida and returns as a warm front. At the higher levels, westerly

winds are common. A principal feature of deep easterly flow in the summertime

is the occurrence of easterly waves and tropical cyclones within the region.

The four summer regimes from which the illustrative examples have

been selected are:

• Southwesterly flow in advance of a cold front

• Northeasterly flow to the rear of a cold front

• Extension of the Bermuda High into the Gulf of Mexico

• Circulation controlled by a tropical cyclone
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TABLE 3-4

METEOROLOGICALMODEL INPUTS FOR1115GMT, 8 DECEMBER 1966

Layer
No.

2

Height
(ft)

59

800

7,200

ii,000

16,400

Wind

Speed

(knot)

13

7

Wind

Direction

(deg)

119

139

170

2394

227

Potential

Temperature

(c)

15

2O

26

39

44

%
(deg)

6

(deg)
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3.4.1 Southwesterly Flow in Advanceof a Cold Front - 0515 GMT,
16 May 1966

A cold front moved off the mainland on 15May 1966andat

0600GMT on 16 May extendedin a northeast-southwest direction across northern

Florida. Figure 3-14 showsthe surface map for 0600GMT and Figure 3-15

shows the 700-millibar map for six hours earlier. The vertical profiles for

0515GMT on 16 May 1967are plotted in Figure 3-16. Thetemperature profile

shows two layers that are approximately isothermal: one layer extendsfrom the

ground to 2700feet, andthe secondlayer extends from about 7600to 8600feet.

The wind speedprofile shows the speedincreasing to 900 feet, decreasing slightly

from 900 to 5000feet, increasing again from 5,000 to 9,000 feet, and remaining

nearly constant from 9,000 to 16,400 feet. With the exceptionof a layer between

6,000 and 9,000 feet within which the wind direction is invariant with height, the

wind backs steadily from 293 degrees at the top of the surface layer to 191degrees

at 14,000 feet. Between14,000 and 16,400 feet the wind veers slightly. The

division of the lowest 16,400 feet into the six layers shownin Figure 3-16 has

been donerather arbitrarily on the basis of these relatively small changesin

profile characteristics. Nearly similar ground-level concentrations would be

expectedfrom the mutli-layer diffusion model if the layer breakdownwere made

solely from the wind direction profile. In this case, five layers would beused

with boundaries at 900, 6,000, 9,000, 14,000 and 16,400 feet. The meteorological

inputs for the layers indicated in Figure 3-16 are shownin Table 3-5. In the
-0.24

surface layer, p = 0.24 and aA and aE are both assumed to vary as z

3.4.2 Northeasterly Flow to the Rear of a Cold Front - 2320 GMT,

22 July 1966

Figures 3-17 and 3-18 show the surface and 700-millibar

maps respectively for a typical post cold-front situation during the summer.

Northeasterly flow prevails throughout the lowest 16,400 feet, and broken stratiform

104
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FIGURE 3-14. Surface map for 0600 GMT, 16 May 1967.
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FIGURE 3-15. 700-mb map for 0000 GMT, 16 May 1967.
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TABLE 3-5

METEOROLOGICAL MODEL INPUTS FOR 0515 GMT, 16 MAY 1967

Layer
NO.

Height

(ft)

2

3

4

5

59

900

2,700

7,000

8,600

14,000

16,400

Wind

Speed

(knot)

16

13

16

19

2O

18

Wind

Direction

(deg)

290

293

282

237

241

191

207

Potential

Temperature _A _E

(C) (deg) (deg)

20 7 3.5

23 4 2

27 0 0

32 0 0

26 0 0

41 0 0

43 0 0
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FIGURE 3-17. Surface map for 0000 GMT, 23 July 1966.

\

\

\

FIGURE3-18.

108

ill!



clouds have formed in the modifying polar air mass. Figure 3-19 shows the

associated vertical profiles of temperature, wind speed and wind direction for

Cape Kennedy at 2320 GMT on 22 July 1966. The temperature profile shows an

approximately dry adiabatic lapse rate from the surface to about 2500 feet,

and a layer from 2500 to 6700 feet in which the lapse rate is slightly less than

the moist adiabatic. The remaining discontinuities in the temperature profile

are minor. The wind profiles exhibit no pronounced shear above the surface

layer. Again, the division of the lowest 16,400 feet into layers is somewhat

arbitrary. In Figure 3-19 the surface layer extends to 2500 feet and is the

principal shear layer. The top boundary of Layer 2 has been indicated as 6700

feet where the lapse rate becomes greater than the moist adiabatic. The layer

from 6700 to 16,400 feet has not been subdivided, although layer boundaries

might be added at 10,000 and 14,000 feet on the basis of wind shear.

The meteorological inputs are shown in Table 3-6. In the
-0.22

unstable surface layer, p = 0.22 and _A and _E are assumed to vary as z
0.08

and z , respectively.

3.4.3 Extension of the Bermuda High into the Gulf of Mexico

On 12 May 1967, the Bermuda High extended westward to

the Gulf of Mexico and a weak surface pressure gradient existed over Florida.

Figure 3-20 shows the surface map for 0600 GMT and Figure 3-21 shows the

700-millibar map for 0000 GMT on this date. The lowest 16,400 feet have been

divided into the five layers shown in Figure 3-22 for use in the multi-layer

diffusion model. Layer 1 extends to the top of the weak ground-level inversion

at 850 feet.

at 3500 feet.

to 5300 feet.

10,000 feet into Layers 4 and 5 on the basis of the wind speed profile.

Layer 2 extends from 850 feet to the base of the subsidence inversion

Layer 3 contains the subsidence inversion and extends from 3500

The height interval from 5300 to 16,400 feet has been divided at

The wind
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TABLE 3-6

METEOROLOGICAL MODEL INPUTS FOR 2320 GMT, 22 JULY 1966

Layer
No.

3

Height

(ft)

59

2,500

6,700

16,400

Wind

Speed

(knot)

7 0

15 62

16 74

16 45

Wind

Direction

(deg)

Potential

Temperature

(c)

26

27

35

47

%
(deg)

10

0

0

(deg)

8
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FIGURE 3-20. Surface map for 0600 GMT, 12 May 1967.
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FIGURE 3-21. 700-mb map for 0000 GMT, 12 May 1967.
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speeddecreases with height slightly between5300and 10,000 feet, and increases

between10,000 and 16,400 feet.

The meteorological inputs for this example are listed in

Table 3-7. Both aAand qEare assumedto vary as z-p in Layers 1 and 2. The

p values for Layers 1 and 2 are 0.20 and0.27, respectively.

3.4.4 Circulation Controlled by a Tropical Cyclone - 1148GMT,
1 July 1966

At 1200GMT on 1 July 1966a tropical depression was

moving up the west coast of Florida andthe center was located west of Cape

Kennedy. The weather over the Florida pennisula consisted principally of

broken or overcast clouds and scattered showers. No rain was occurring at

CapeKennedy. Figures 3-23 and 3-24 showthe surface and 700-millibar maps,

respectively, for 1200GMT. Thevertical profiles at 1148GMT at CapeKennedy

are plotted in Figure 3-25. Figure 3-25 divides the lower 16,400 feet into

three layers for use in the diffusion model. Layer 1 extends from the surface

to I000 feet. The boundary at 1000feet divides the surface layer of strong wind

speedshear from Layer 2 within which the wind speedis nearly invariant with

height. The top of Layer 2 at 10,700 feet coincides with the bottom of an iso-

thermal layer where the dewpoint begins to decrease rapidly with height. The

top of Layer 2 also is the top of the layer within which the wind backswith

height. Layer 3 extends from 10,700 to 16,400 feet. Thevariation of wind

direction within this layer is about 5 degrees and the wind speedincreases with

height from 20 to 28 knots.

The meteorological inputs at the boundariesof the layers

are listed in Table 3-8. Within Layer 1, which is near-neutral in stratification,
-0.22

p = 0.22, and aA and aE are assumed to vary as z
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TABLE 3-7

METEOROLOGICAL MODEL INPUTS FOR 0515 GMT, 12 MAY 1967

Layer
No.

4

5

Height

(ft)

59

85O

3,500

5,300

10,000

16,400

Wind

Speed

(knot)

6

11

16

15

13

22

Wind

Direction

(deg)

200

230

237

263

303

328

Potential

Temperature CrA erE

(C) (deg) (deg)

22 6 3

25 4 2

28 3 1

37 0 0

41 0 0

44 0 0

115



SLC302032

FIGURE 3-23. Surface mapfor 1200 GMT, 1 July 1966.
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FIGURE 3-24. 700-mb map for 1200 GMT, 1 July 1966.
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TABLE 3-8

METEOROLOGICAL MODEL INPUTS FOR 1148 GMT, 1 JULY 1966

Layer

No.

2

Height

(ft)

59 10

i,000 20

10,700 20

16,400 28

Wind

Speed

Wind

Direction

(deg)

160

173

210

(knot)

206

Potential

Temperature (TA aE

(C) (deg) (deg)

25 9 5

26 5 3

39 0 0

49 0 0
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3.5 EXTENSION TO OTHER LAUNCH SITES

The diffusion models recommended for use at Cape Kennedy are

general in form and are not restricted to this site. Further, the basic procedures

suggested for structuring the atmosphere for application of the multi-layer

diffusion model are also independent of the site. However, mesoscale circula-

tions, which may control the transport of airborne material within the surface

layer, are typically closely related to the surface features of a particular area.

Also, the vertical profiles of wind speed and turbulence parameters near the

surface, as well as the low-level reference values of the turbulence parameters,

are dependent upon the roughness and thermal properties of the underlying sur-

face. The meteorological inputs developed in Section 2.1 for use in modeling

diffusion from low-level releases refer specifically to Cape Kennedy. They

should not be applied to other launch sites without first making a careful study of

the surface features of these sites and the local wind circulation patterns. The

near-neutral value of (rA is a useful indicator of site roughness, and, in the

absence of extensive local measurements, the use of Figures 2-10, 2-13, 2-17

and 2-18 is acceptable for the estimation of p, (rA, q and _E at sites where (rA

under near-neutral conditions is approximately 9 degrees at a height of about

18 meters.

Within Kennedy Space Center and its immediate environs, the terrain

is quite flat and the principal causes for local irregularities in flow character-

istics are differences in vegatative cover, the presence of buildings and other

structures, and the water-land boundaries. The curves for the estimation of _A'

_E' p and q presented in Section 2.1 were developed from data collected during

both winter and summer seasons, all times of day, and all wind directions, and

are generally applicable throughout Kennedy Space Center. However, diffusion

from small sources in the immediate vicinity of structures will be controlled in

the initial stages by the flow created by these obstacles. Although some adjustment
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to the average curves for the prediction of the meteorological inputs may be made

for differences in upwindvegetation from the polar coordinate charts of Section

2.1 and a knowledgeof the site at the Meteorological Tower Facility, this refine-

ment would seldom be justified becauseof the large space and time variations

inherent in turbulent structure.
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SECTION 4

CONCLUSIONS AND RECOMMENDATIONS

This report has outlined in detail a method for calculating toxic fuel

hazards arising from operations at Kennedy Space Center, listed the various

types of meteorological information required for these calculations, and des-

cribed interim procedures for obtaining specific meteorological inputs for a

computerized mutli-layer diffusion model, based on an intensive analysis of

previous meteorological measurements made at KSC.

As pointed out in Section 1 of the report, the requirements for meteor-

ological information in connection with toxic fuel hazard estimation at KSC may

extend throughout a reference volume having vertical dimensions of several

kilometers and horizontal dimensions of the order of 100 kilometers. However,

the meteorological information which is routinely available within this volume

is chiefly limited to a few surface and tower observations over land, and the

radiosonde and Jimsphere soundings made at Cape Kennedy. Sections 2 and 3

of the report have illustrated the use of these limited data for the specification

of meteorological inputs to the diffusion models. It is clear, however, that the

present density of observations is inadequate to describe the time and space

variations in atmospheric structure which affect transport and diffusion within

the reference volume for all scale requirements. A better understanding of

these variations can undoubtedly be achieved as a result of a continuing analysis

of data collected with the present observational network. Suitable data are

available from:

Jimsphere soundings

Radiosonde soundings
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• NASA's 150-meter Tower Facility

• Hourly surface observations

• Weather radar reports

To obtain the requisite data for further study of time and spacevariations, it is

recommendedthat a field program beundertaken which would take full advantage

of current observational techniques. These techniques include the use of:

• An instrumented aircraft

Jimsphere soundings(with temperature probe)

• Radiosondesoundings

• Tetroons

• Weather radar

• Surface and tower observations

It is particularly important that the program be designedto study the dimensions

and strength of the land- and sea-breeze circulations and counter flows, and the

changesin stability andwind structure which occur as air moves from water to

land and from land to water.

There is also an absenceof source information in a convenientand

readily available form for the wide variety of release modes and toxic products

to be considered. The source information required consists of the amount and

rate of toxic material released and its chemical andphysical properties, and the

dimensions, andposition in space of the cloud after reaching equilibrium. It is

recommendedthat a continuing program bemaintained to observe stabilization
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heights, source dimensions and cloud characteristics during operations at KSC.

The program should include the use of:

• lidar

• photographic techniques

• visual observations

The work carried out under this contract and the development of com-

puter programs and plotting routines under Contract NAS8-21453 represents a

major step toward the prediction of toxic hazards at Kennedy Space Center for

planning and operational purposes. It is recognized, however, that the develop-

ment of prediction procedures must be an evolutionary iterative process, and

that any statistical validation of the procedures will require a very large number

of de tailed observations.
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